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In a wide range of taxa, there is evidence that mothers adaptively shape the
development of offspring behaviour by exposing them to steroids. These
maternal effects have major implications for fitness because, by shaping
early development, they can permanently alter how offspring interact with
their environment. However, theory on parent–offspring conflict and recent
physiological studies showing that embryos rapidly metabolize maternal
steroids have placed doubt on the adaptive significance of these hormone-
mediated maternal effects. Reconciling these disparate perspectives requires
a mechanistic understanding of the pathways by which maternal steroids
can influence neural development. Here, we highlight recent advances in
developmental neurobiology and psychiatric pharmacology to show that
maternal steroid metabolites can have direct neuro-modulatory effects poten-
tially shaping the development of neural circuitry underlying ecologically
relevant behavioural traits. The recognition that maternal steroids can act
through a neurosteroid pathway has critical implications for our understand-
ing of the ecology and evolution of steroid-based maternal effects. Overall,
compared to the classic view, a neurosteroid mechanismmay reduce the evol-
utionary lability of hormone-mediated maternal effects owing to increased
pleiotropic constraints and frequently influence long-term behavioural
phenotypes in offspring.
1. Introduction
Across diverse taxa, maternal allocation of steroid hormones to developing
offspring varies with environmental conditions and is linked to adaptive adjust-
ment of offspring phenotypes, including behavioural traits (birds [1,2], mammals
[3–5], reptiles [6] and fishes [7]). By shaping key evolutionary and demographic
processes, such hormone-mediated maternal effects have major consequences
for fitness in wild populations [2,8–12]. However, theory suggests mothers and
offspring may be engaged in a coevolutionary conflict with each side evolving
different strategies to either resist or manipulate the other [13–15]. In this view,
if maternally derived steroids are detrimental to offspring fitness, selection
should favour offspring that can dismantle maternal hormones, thus inhibiting
the evolution of adaptive hormone-mediated maternal effects [16].

Empirical studies examining the links between maternal steroids and off-
spring traits have yielded mixed results without resolving these conflicting
ideas. On one hand, exposure of offspring to maternal steroids varies with
environmental cues and is often correlated with the induction of ecologically rel-
evant offspring phenotypes suggesting these maternal effects are adaptive (e.g.
see [4,10]). On the other hand, recent physiological studies demonstrate that
embryos rapidly metabolize maternal steroids into supposedly inert forms
before they reach the developing embryo [17–21]. Because these steroid metab-
olites do not bind with classical steroid receptors, it suggests that embryos may
‘win’ in parent–offspring conflict by buffering themselves from maternal control

http://crossmark.crossref.org/dialog/?doi=10.1098/rspb.2020.2467&domain=pdf&date_stamp=2021-01-27
mailto:james@moutons.org
http://orcid.org/
http://orcid.org/0000-0002-8475-9078
http://orcid.org/0000-0003-0427-4108


royalsocietypublishing.org/journal/rspb
Proc.R.Soc.B

2
[13,14]. This raises new questions about the physiological
mechanism through which maternally derived steroids might
alter offspring traits and, more generally, the adaptive function
of variation in maternal steroids. Here, we draw on recent
advances in developmental neurobiology and psychiatric
pharmacology to help answer these questions. We show that
metabolized, and presumably deactivated, maternal hormones
can impact the development of neuroendocrine circuits in
offspring through neurosteroid pathways. Neurosteroid mech-
anisms may be the primary or an important supplemental
pathway by which maternal steroids influence offspring
phenotype, but have largely been ignored in the ecological lit-
erature (but see [17,22]). Integrating cutting-edge discoveries
from these diverse fields provides insight into how maternal
steroids can influence offspring behavioural phenotypes
and has profound implications for our interpretation of the
ecological and evolutionary consequences of maternally
derived steroids.
288:20202467
2. The problem: embryonic metabolism of
maternal steroids

Mothers expose their developing offspring to a suite of differ-
ent steroid hormones, and it has long been assumed these
hormones affect offspring phenotypes through the action of
classical steroid receptors [16,23,24]. In this view, maternally
derived steroids (e.g. testosterone) bind to steroid receptors in
the embryo (e.g. androgen receptors) which can act as tran-
scription factors, altering gene expression and, ultimately, the
development of offspring phenotypes [25]. Yet, most maternal
steroids are metabolized into compounds that are unable
to bind to the receptors of their precursor steroids. For example,
it has been shown in a variety of oviparous taxa that
maternal testosterone levels rapidly decline in the yolk and
albumen in the initial hours and days of incubation (chickens
[18,22,26], European starlings [19,27], rock pigeons [17], zebra
finches [28], Japanese quails [29] and red-eared slider turtles
[30,31]). This decline does not reflect conversion to other
steroids or uptake by the embryo. Studies that tracked
radio-labelled testosterone in the egg generally find little
to no conversion to other active steroids such as androstene-
dione, 5α-dihydrotestosterone, oestrogen or progesterone
[17,18,22]. Instead, testosterone is generally metabolized into
more polar, water-soluble forms such as etiocholanolone,
which are often conjugated (e.g. bound to a sulfate group)
further limiting their ability to bind to androgen receptors
[17,18,22,27,31].

Similar metabolic pathways are observed for other mater-
nal steroids. Androstenedione converts to etiocholanolone
and its conjugates with little evidence of conversions to other
biologically active steroids, such as testosterone or progester-
one [17,18,32]. In both birds and mammals, progesterone is
converted to pregnanolone or other similar forms which are
often conjugated and do not act via progesterone, androgen,
oestrogen or glucocorticoid receptors [17,19–21,30,31,33–35].
Glucocorticoids are also rapidly metabolized, producing
more polar, conjugated forms (birds [22,36], mammals [37]
and reptiles [38]). Several studies which injected labelled oes-
tradiol into eggs at oviposition found rapid and steady
declines over time and evidence it is converted to conjugated
forms [19,30].While there has been some evidence for increases
in oestrogen in yolk over time in several species [26,29,39], this
may derive from early endogenous production by the embryo
rather than the conversion of maternal steroids [40,41]. Thus,
recent studies have found a remarkably consistent pattern of
maternal steroids being metabolized into compounds which
do not bind with the classical steroid receptors.

Are embryos actively metabolizing maternal steroids
before they can be directly exposed to them? Several studies
in oviparous species have shown that the metabolism of
maternal steroids only occurs (or occurs at much higher
rates) in eggs with live embryos than infertile eggs or eggs
with dead embryos [20,28,36]. This indicates that embryos
are actively producing the enzymes that metabolize maternal
steroids. The rapid metabolism of maternal steroids in the
yolk and the difficulty of lipophilic steroids to be transported
into the more aqueous embryo suggests that little active
maternal steroid can act directly on embryonic tissues
[23,42]. Indeed, studies examining the location and metab-
olism of labelled steroids in eggs find most is metabolized
prior to entry into the embryo [18,19,36,43].

Still, the direct effects of maternal steroids through classical
steroid receptors cannot be completely ruled out. First, small
quantities of free steroid can make it to the embryo. Studies
injecting chicken eggs with labelled corticosterone show that,
while small amounts of labelled corticosterone are mostly
metabolized, higher injection doses result in greater quantities
of corticosterone in embryos 6 days later [43]. Second, a recent
study found steroid receptors were expressed in extra-
embryonic membranes when free steroids were still found in
the yolk [44]. These receptors are in a prime location to be acti-
vated by steroids given their proximity to the yolk. However,
the action of these receptors is unknown and may simply regu-
late the metabolism of maternal steroids rather than mediate
effects on offspring phenotype. Finally, sulfate-conjugated
hormones that move into the embryo may be converted back
into active steroids [42]. Steroid sulfatase, an enzyme that con-
jugates steroids by adding a sulfate group, is reversible and is
expressed widely in embryonic tissues across developmental
stages [45]. Such conversions are particularly interesting
because steroid sulphatase is X-linked in some taxa which
could help explain the prevalence of sex-specific phenotypic
effects of maternal steroids [1,46]. Still, further conversions
involving other enzymes would be required to convert, for
example, etiocholanolone sulfate back into testosterone and
allowaction via androgen receptors; it remains unclearwhether
such conversions are possible. Thus, while embryonic metab-
olism of maternal steroids may enable transport of lipophilic
steroids to the aqueous environment of the embryo, the mech-
anisms underlying the ultimate actions of maternal steroids
remain unclear.

Thus, while current studies don’t completely rule out the
idea of a direct action of maternally derived steroids, taken
together, they suggest that our current model for how
maternal steroids affect offspring phenotype may be incom-
plete. How can we reconcile the seeming inactivation of
maternal steroids with ecological studies that not only pro-
vide evidence that offspring traits are affected by them, but
also suggest these effects are refined adaptations to environ-
mental variation (e.g. [4,9,10])? Intriguingly, many of these
steroid metabolites are neuroactive steroids (hereafter neuro-
steroids) that mediate important neural and developmental
processes, many of which may underlie the commonly
observed correlations between maternal steroid allocation
and phenotypic effects in offspring (figure 1a).
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Figure 1. A neurosteroid pathway for the phenotypic effects of maternal steroids. (a) Many maternal steroids are converted into neurosteroid metabolites that do
not bind with classical receptors. (b) However, these neurosteroid metabolites can bind with neurotransmitter receptors and microtubule-associated proteins and
modulate their activity. (c) Variation in the activity of developing neural circuits can, for example, (i) alter neuron outgrowth, (ii) influence the response of growing
neurites to chemical guidance cues, and (iii) promote or inhibit axon branching depending on the developmental stage. Modulation of these key neural processes via
maternally derived neurosteroids may underlie effects of maternal steroids on long-term variation in behaviour by shaping the size or connectivity of neural circuits
in different brain regions. Panel (c) is adapted from [67] © 2012 The Authors. European Journal of Neuroscience © 2012 Federation of European Neuroscience
Societies and Blackwell Publishing Ltd.
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3. Maternal steroids as precursors for
neurosteroids

Neurosteroids are steroids that influence the activity of neurons
in the short-term via non-genomic pathways (i.e. without
directly altering gene expression). There aremany types of neu-
rosteroids that modulate neural activity in different ways
(figure 1b). For example, they can bind to specific allosteric
sites on multiple key neurotransmitter receptors (e.g. GABAA,
N-methyl-D-aspartate (NMDA)) [47]. By binding to allosteric
sites,whichare separate fromthemainactive site, neurosteroids
can affect sensitivity to neurotransmitters without creating
interference at the active site. Thus, neurosteroids have impor-
tant roles in modulating the sensitivity to neurotransmitters
and affecting their activity and ultimately influence multiple
neural processes including neuroprotection, myelination, out-
growth of neurites and dendritic spines and synaptogenesis
(figure 1c) [48–53]. Through their effects on these cellular pro-
cesses, neurosteroids can influence the size and connectivity
of neural circuits in the brain and thereby shape long-term off-
spring behavioural traits. Neurosteroid actions on the central
nervous system can also explain the effects of maternal steroids
on ecologically relevant non-behavioural traits such as somatic
growth, metabolic rate and immune function (see below).
Below, we focus on how neurosteroid actions during develop-
ment may adaptively shape brain structure and function
by highlighting one well studied molecular interaction:
neurosteroid modulation of GABAA receptors.
(a) Detailed mechanisms of neurosteroids on GABAA
receptors

GABAA receptors, which are located in the plasma membrane
of nerve terminals, glial cells and other somatic tissues, are acti-
vated by γ-aminobutyric acid (GABA), the main inhibitory
neurotransmitter in vertebrates. Action of GABA on these
receptors decreases the likelihood of post-synaptic electrical
activity in neural circuits. Neurosteroids, including those
created from maternal steroid precursors, can increase or
decrease the receptor’s affinity for GABA, thereby altering
the likelihood of action potentials [53,54], neural activity, and
may have major implications for the developing nervous
system [55–62].

Already, in very early stages of embryonic development,
electrical activity is produced by neurons and GABAA recep-
tors are expressed in neurons across tissues [63–68]. In these
early stage embryos, spontaneous neural activity, which is
not triggered by environmental stimuli, is essential for key
developmental processes including neural tube formation,
neurogenesis, cell migration, programmed cell death, cellular
differentiation and the formation of local and long-range
neural connections [66,68–71]. Electrical activity in developing
neurons can also influence cell growth and neurite branching
as well as modulate responses to chemical guidance cues,
whichmay havemajor implications for the degree and strength
of connectivity in neural circuits important for behaviour
(figure 1c,d) [66]. This electrical activity can be influenced by
neurosteroid modulation of neurotransmitter receptors such
as GABAA receptors, with wide-ranging consequences for
the structure and function of brain tissue and the development
of behaviour later in life. For example, guinea pigs that had
reduced exposure to allopregnanolone (a placenta-derived
neurosteroid) in utero were more likely to exhibit anxiety-like
behaviour [72]. Similarly, exposure to neurosteroids in neonatal
rats reduced the negative long-term behavioural and neuro-
endocrine consequences of maternal separation early in life
[73]. Notably, the effects of neurosteroids on behaviour are
often context-dependent (i.e. neurosteroid exposure effects
vary with postnatal stress treatments) and sex-specific which
mirrors findings regarding maternal steroid effects from the
ecological literature [72,74,75]. In humans, reduced exposure



royalsocietypublishing.org/journal/rspb
Proc.R.Soc.B

288:20202467

4
to placental neurosteroids in utero is linked to a greater risk of
developing attention deficit hyperactivity disorder, anxiety
and other long-term behavioural consequences of pre-term
birth [57,60,61]. Together, these findings strongly support
the idea that maternally derived neurosteroids influence elec-
trical activity in neurons and are essential for the normal
development of neural function and behaviour.

While neurosteroids have clear implications for brain func-
tion and behaviour, neurosteroid actions on GABAA receptors
may also indirectly influence other tissues that are frequently
associated with non-behavioural responses to maternal
steroids. For example,many studies have found that embryonic
exposure to testosterone is associated with muscular and skel-
etal growth [1,4]. Electrical activity in developing neurons,
which can be sensitive to neurosteroid modulation, is impor-
tant for forming neural tissue connections in these tissues
[76]. For instance, GABAA receptors are found in skeletal
muscle and GABAergic activity regulates muscle innervation
inmice [77]. Neurosteroid-sensitive GABAA receptors also pro-
mote cell proliferation in rat tibial growth plates which are
critical to long bone growth [78]. Maternal steroids are
also known to influence offspring immune function, and,
because GABAA receptors are expressed in many immune
cells, immune effects may be modulated by neurosteroid
metabolites of maternal steroids [1,79]. For example, GABAA

receptors modulated the innate immune response in tissue cul-
tures and GABAergic inhibition was associated with increased
bacterial loads and host susceptibility in zebrafish and mice
[79]. Additionally, GABA is implicated in multiple endocrine
disorders, suggesting early neurosteroid actions on GABA
activity could have direct effects on adrenal, thyroid, gonadal
and somatic endocrine axes [80]. Such interactionsmay explain
previously described steroid-mediated maternal effects on
hormone sensitivity [81] and many other phenotypic traits
including metabolic rate [82] and anti-oxidant status [83].
Clearly, the actions of neurosteroids derived from maternal
hormones have the potential to shape the development of a
diversity of offspring phenotypes including growth, immune
and endocrine functions, beyond their clear potential for
influencing neural connectivity and behaviour.

(b) Neurosteroids and adaptive programming
of behaviour

Variation in maternally derived neurosteroids could adap-
tively shape specific neural circuits and influence the subtle
or discrete phenotypic variation in adaptive offspring behav-
iour in several ways. First, developing neural circuits have
discrete time periods (‘sensitive windows’ sensu [84]) when
they proliferate, form connections and consolidate those
connections. Neurosteroid modulation of neural activity
could affect either the length of sensitive windows or the rate
of activity-dependent processes during sensitive windows.
Altering the duration of sensitive developmental windows
may either enable or minimize the modulating effects of
other inputs such as endogenously produced hormones
acting via classical receptors [84,85]. Trade-offs between the
size and connectivity of different neural circuits may yield
smaller or less well connected neural circuitry in later develop-
ing regions [86]. For example, neurosteroids may cause
increases in the space taken up by early developing circuits
in the limbic system, which controls emotion, and limit the
space available for the later developing neural circuits
associated with higher level cortical functions such as
decision-making [87,88]. Physical trade-offs between brain
regions underlying these general functions are associated
with many ecologically relevant behavioural traits, such as
fearfulness and aggression [88,89].

Second, there are clear biologically relevant differences in
how different metabolites of maternal steroids interact with
developing neural networks (figure 1b) [51]. For example,
allopregnanolone stimulates GABAA receptors, but dehy-
droepiandrosterone (DHEA) and DHEA-sulfate inhibit
GABAA receptors, suggesting that the balance of these
metabolites is important in regulating GABAA receptor
activity [51]. This supports the view that maternal steroids
should be considered from a multivariate perspective, as it
is the interaction between the suite of maternally allocated
steroids and their metabolites, rather than each in isolation,
that are key to understanding phenotypic effects in offspring
[15,17].

Finally, the effects of neurosteroids on synaptogenesis and
neurite outgrowth could have implications for lateralization
of various brain regions and functions [90]. For example, appli-
cation of testosterone, oestrogens or corticosterone in chicken
eggs prevents lateralization of thalamofugal vision projections
normally caused by light stimuli during incubation [91].
Neurosteroid metabolites of these hormones might induce
this effect by increasing neural activity in regions without
light stimuli or decreasing neural activity caused by light
stimuli. Birds lacking this lateralization show reduced foraging
efficiency in the presence of a predator and showed more fear-
ful behaviour when they detected a predator’s presence [91].
These traits are typically associated with less bold behavioural
types [92]. Lateralization is associated with behavioural traits
with clear implications for fitness in other taxa as well (fish:
[93], amphibians: [94] and mammals: [95,96]). Ultimately,
the link between maternally derived neurosteroids, brain
lateralization and behaviour demand further study.
4. Ecological and evolutionary implications
(a) Maternal hormones, sexual differentiation and

pleiotropic constraint
One long-standing puzzle regarding the effects of maternal
steroids on offspring is that they have little effect on sexual
differentiation [97,98]. In birds and mammals, oestrogens
androgens, and their receptors are essential for sexual differen-
tiation of the gonads, reproductive tracts, brain and behaviour
[97,99,100]. Yet, while biologically relevant variation in
maternal sex steroids seems to have little or no effect on
sexual differentiation, extremely high doses of sex steroids do
influence sexual differentiation [23,97]. The knowledge that
maternal steroids are rapidly metabolized prior to entering
the embryos in conjunction with a neurosteroid mechanism of
action resolves this seeming paradox. Maternally derived sex
steroids that are immediately converted into neurosteroids
will not interfere with sexual differentiation and still can influ-
ence offspring trait development. Unnaturally high doses of
sex steroids used in some experiments may exceed the capacity
for embryonic enzymes to convert them, leaving substantial
amounts of unmetabolized steroids to reach the embryos and
interfere with sexual differentiation. Together, these obser-
vations provide an explanation for why it may have been
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necessary for indirect rather than direct effects of maternal
steroids to evolve. A neurosteroid mechanism of action can
eliminate the potential interference of steroids with sexual
differentiation while still allowing adaptive adjustment of
behaviour and other ecologically relevant traits. Thus, a
neurosteroidmechanismmay allow selection to shape adaptive
maternal steroid allocation strategies more freely [100–102].

In contrast with effects on sexual differentiation, maternal
steroids acting through a neurosteroid pathway may make it
more difficult to decouple other ecologically relevant traits
(e.g. somatic growth, aggression) compared to actions via
steroid receptors. Classical hormone receptors can be
expressed differentially across tissues and can be temporally
disassociated from endogenous steroid production by the
developing offspring [13,101,102]. For example, steroid recep-
tors are expressed in some tissues before embryos begin
producing steroids endogenously ([103], but see [40]). This is
often taken as evidence for adaptation for steroid-mediated
maternal effects because any remaining unmetabolized
maternal steroid binding to these receptors would not interfere
with important processes regulated by endogenous hormones
(i.e. sexual differentiation). Additionally, the expression of
steroid receptors may be able to increase or decrease in many
tissues without major costs. For example, mutant mice that
were entirely unable to express androgen receptors in their ner-
vous system showed abnormal sexual behavioural, but
nevertheless survived to reproductive maturity and produced
offspring [104]. Thus, the evolution of steroid receptor distri-
butions may be fairly labile, allowing selection to act rapidly
in decoupling particular traits from the effects of maternal
steroids if antagonistic selection favours novel trait combi-
nations [15,101,102,105].

The activity of neurotransmitter-mediated ion channels,
such as from GABAA receptors, are essential for normal func-
tioning and development of the central nervous system even
during the very earliest stages of life (e.g. neural tube for-
mation, neurogenesis and neural cell migration [70]). In
contrast with the mutant mouse example above [104],
mutations dramatically altering expression patterns of these
receptors are more likely to disrupt key GABA-binding related
functions and result in catastrophic consequences very early in
development (e.g. respiratory failure [106,107] and neural tube
defects [71]). Moreover, given the relative stability of neural tis-
sues, neurosteroid effects on neurogenesis, cell migration and
neural connectivity seem more likely to contribute to long-
term effects on these neural tissues and associated stable be-
havioural traits [84,89,108]. Thus, overall, co-expression of
traits through a neurosteroid pathway may be more difficult
to decouple than under the classical pathway owing to the
widespread, primary and long-lasting effects of altered
neural activity early in development.

(b) Evolution of hormone-mediated maternal effects
as carry-over effects

Exposure to maternal hormones is known to affect both short-
term and long-term phenotypes in offspring. For example, in
birds, yolk androgens are linked to short-term traits expressed
exclusively in early life stages (nestlings) such as growth and
begging behaviours as well as long-term traits expressed
across multiple later life stages such as aggression and sexual
traits [1]. Consequently, a useful framework for addressing
the evolution of hormone-mediated maternal effects is the
evolution of carry-over effects where phenotypic traits
expressed earlier in life are linked to the expression of phenoty-
pic traits later in life [105,109]. Selection on carry-over effects
may favour combinations of early (i.e. short-term) and late
(i.e. long-term) expressed phenotypes that are either facilitated
or constrained by shared underlying developmental pathways
[101,102,105]. If directional selection on early and late
expressed traits is concordant, the underlying pathway will
evolve to shape both traits as a correlated suite. By contrast,
under antagonistic selection, the nature of the underlying
developmental pathway and the ecological significance of the
associated phenotypic traits can have a major impact on their
evolution. Given that phenotypic traits affected by the action
of maternally derived neurosteroids might not be easily
decoupled (see above), theory on the evolution of carry-over
effects provides two principle insights [105].

First, the evolution of steroid-mediated maternal effects
will depend on the relative strength of selection across early
and late-life stages (or ages). When two traits face selection
for different optima, a classic steroid receptor paradigm pre-
dicts that sensitivity of each trait to maternal steroids should
evolve to allow optimal expression of both traits [13,101,102].
Under a neurosteroid-based pathway where traits cannot be
easily dissociated, antagonistic selection may not be able to
optimize both traits and the overall response to selection will
depend on the strength of selection during early versus late-
life stages and their relative contribution to fitness [105]. The
strength of selection during any particular life stage depends
on the selection gradient on fitness components during that
stage and the relative contribution of distinct fitness com-
ponents to lifetime reproductive success [105,110,111]. This
means that the importance of selection on maternally derived
neurosteroid linked traits depends directly on both the onto-
genetic timing of trait expression and the life history and
stage-structure of a given species or population. For example,
survival during later life stages contributes more to fitness in
longer-lived than shorter-lived species [110,112,113]. Thus, if
accurate environmental cues are available, the selection on
maternal neurosteroid-mediated traits that influence survival
in adult life stages should be relatively stronger in longer-
lived than shorter-lived species. In many cases, long-term
traits expressed across multiple life stages may have an out-
sized effect on fitness. For example, maternal steroid effects
on long-term behavioural traits, such as aggression, are often
expressed before sexual maturity and influence survival over
long periods of important pre-reproductive life stages as well
as survival and fecundity in adult life stages [88,114]. In this
case, selection may act more strongly on traits expressed over
a longer duration and in life stagesmost critical for fitness. Con-
sequently, adaptive maternal effects based on neurosteroid
activity may be more likely to evolve in longer-term traits
such as stable behavioural types while costs are more likely
to be incurred through shorter-term traits. Comparative studies
that examine how the fitness effects of maternal steroids in eco-
logically relevant conditions differ among species with distinct
demographic traits are needed to test these ideas.

Second, strongantagonistic selection shouldact to dissociate
both early and late expressed traits from environmental vari-
ation in maternally derived neurosteroids. If antagonistic
selection on carry-over effects is strong and balanced across
life stages, theory predicts over evolutionary timescales it
will either (i) alter the sensitivity of each trait to the shared
developmental pathway independently, (ii) dissociate the
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developmental pathway from environmental conditions, or
(iii) reduce the sensitivity of all offspring phenotypes linked to
the shared developmental pathway [105]. The first scenario
seems unlikely under a neurosteroid mechanism, given there
may be greater constraints on receptor expression compared to
a classical mechanism (see above). In the second case, variation
in maternally derived steroids would evolve to become unre-
lated to environmental variation. The sensitivity of maternal
steroid deposition to environmental cues, such as population
density, are greater in some species (e.g. colonial breeders)
than others (e.g. solitary breeders), potentially reflecting vari-
ation in antagonistic selection [115]. In the third case, offspring
would prevent maternally derived neurosteroids from having
any effects and instead rely on endogenously produced neuro-
steroids during development. This could manifest as the
further metabolism of maternally derived neurosteroids into
compounds that are not neuroactive or mechanisms to prevent
maternally derived neurosteroids from accessing embryonic
tissue. In either case, mechanisms for adaptive programming
other than maternal steroid transfer may enable offspring
traits to respond independently to maternal cues about the
environment. Studies comparing environmental sensitivity of
maternal steroid deposition (e.g. see [115]) and additional
studies examining steroid metabolism by offspring in species
with clear predictions about selective regimes will shine light
on these issues.
(c) Parent–offspring conflict and coadaptation
Maternally derived hormones and offspring responses to
those hormones have been proposed to be an important bat-
tleground for sexual and parent–offspring conflict because of
traits such as offspring begging behaviours which can influ-
ence parental investment [1,13–16]. In this view, allocation
of maternal steroids may increase fitness for mothers, but
only at a cost to the fitness of individual offspring or, in
species with paternal care, fathers [16]. The proposed neuro-
steroid mechanism of action for maternal steroids has several
implications for this notion.

First, the idea that maternal steroids are central to parent–
offspring conflict presupposes that the most important fitness
effects of maternal steroids will occur during life stages with
substantial parental investment [105,116]. Once offspring no
longer receive costly care from their parents, the evolutionary
interests of parents and offspring align with both favouring
maximizing offspring lifetime reproductive success. A neuro-
steroid pathway acting on relatively stable neural tissues
[89,108] may be more prone to shape long-term behavioural
traits that face selective pressures across multiple life stages
(see above). Because selection would be acting on these traits
well after independence from parental care, this may reduce
the importance of parent–offspring conflict. For example, selec-
tion on offspring that increases begging intensity to increase
parental investment and fitness in the first week of life may
be counteracted by selection for reduced aggression or disper-
sal propensity in later life stages. Moreover, young offspring in
many species face high levels of mortality owing to extrinsic
factors (e.g. predation, harsh weather, low food availability)
that are more likely to be influenced by parental traits such
as nest site selection than offspring traits expressed during
early stages [117]. This may also cause selection on maternal
neurosteroid linked offspring traits to become more important
as offspring age.
Second, part of the reason why maternal allocation of
steroids is thought to provide an arena for parent–offspring
conflict is that selection can shape offspring responses to
favour offspring instead of maternal fitness [13–16]. For
example, offspring could express hormone receptors in
the tissues and densities that favour offspring fitness at
the expense of maternal fitness. From this perspective, the
rapid manipulation of maternal steroids into compounds
that do not bind to classical hormone receptors could be
interpreted as evidence for offspring completely nullifying
the effect of maternal steroids [13–16]. However, if maternally
derived neurosteroids act directly on developing offspring
neural circuits, the ability of offspring to actively resist the
effect of maternal steroids may be more limited. Unlike hor-
mone receptors which can be expressed or not in many
tissues, the location and timing of expression of GABAA

receptors, for example, may be less evolutionarily labile (see
above, [71]). Thus, under a neurosteroid mechanism,
responses to maternal steroids may be less likely to represent
manipulative signals and more likely to represent the aligned
interest of parents and offspring rather than a conflict over
parental investment.
5. Future directions
In this review, we have drawn on recent work in behavioural
ecology, developmental neurobiology and psychiatric pharma-
cology to highlight evidence that maternal steroids may act
on offspring phenotypes via a neurosteroid pathway and
explore its ecological and evolutionary consequences. None-
theless, much work remains to be done to fully elucidate
the neurosteroid-based mechanisms described here and
understand their evolution. First, more research is needed to
detail the physiological mechanisms underlying the effects of
maternal hormones. Though several past experiments have
examined the location of maternal steroid metabolites relative
to the embryo [18,19,36,37], more studies are needed to trace
different metabolites across tissues and throughout embryonic
development. Such studies will improve our understanding
of interactions between maternally derived steroids and
neurotransmitter or classical steroid receptors. Second, a neuro-
steroid pathway also predicts that patterns of neuron activity,
growth and connectivity will differ with variation in maternal
hormones. Experiments that manipulate yolk steroids or
steroid metabolites (e.g. [27]) and measure effects on electrical
activity in embryos (e.g. microelectrode array recording [118])
or examine changes to the structure of neural circuits in brain
sections would be helpful. Creative experiments involving
chemicals that block neurosteroid production (e.g. finasteride
[72]) may be useful in this context. Finally, the testing for a
neurosteroid pathway demands (i) an increased focus on the
long-term implications of maternal steroids in the context of
structured populations and environmental variation, and
(ii) comparative work that examines how populations or
species differ in maternal steroid deposition under varied
environmental conditions (e.g. [115]). Ultimately, while a neu-
rosteroid pathway does not preclude the possibility of direct
effects of maternal steroids through classical steroid receptors
(see above), the presence of maternally derived neurosteroids
in developing embryos suggests a neurosteroid pathway
deserves more study. Examining the complex actions of
maternal steroids during offspring development promises to
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provide a richer understanding of adaptive maternal effects
and the development of behaviour.
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